November-16-09

Recall Verma modules:

 $\mathcal{M}_{\pm} := \mathcal{U}(\mathcal{G}) \otimes_{\mathcal{G}_{\pm}} /_{\mathcal{G}_{\pm}} \stackrel{\sim}{=} \mathcal{U}(\mathcal{G}_{\mp}) \otimes_{\mathcal{G}_{\pm}} /_{\pm} \stackrel{\sim}{=} \mathcal{U}(\mathcal{G}_{\mp})$

There are co-products i: My -> M+ &M+ Also, M is The category with

Ob(M) = draps of 9}

 $Mo_{\mathcal{M}}(U,V):=Hom_{\mathcal{G}}(U,V)[t]$

it is a brailed monoidal category with R= et 1/2.

Lemma the assignment $1 \rightarrow 1+8/L$ which g invariantly to an isomorphism of g-modules $U(g) \rightarrow U(g_{-}) \otimes U(g_{+}) = M_{+} \otimes M_{-}$

We want to define a BA structure on U(y)
(i.e., a new coproduct and unit).

Note that if $j \in U(g)$ we can view $g \in End(F)$, where $F: M \to V(d[f])$.

Let F^2 : $M \times M \rightarrow Vict [k]$ be $(U,V) \mapsto F(U) \otimes F(V)$. We need $(F) \rightarrow End(F^2)$.

Recall that threis an iso O: U(g) -> Ext(F)

If we had natural isomorphisms:

Recall A tensor structure on a functor $F: \mathcal{C} \to \mathcal{C}$ b/w monoidal categories

is a family of natural iso. $J_{XY}: F(X) \otimes F(Y) \longrightarrow F(X \times Y)$ S.t. some (obvare laws apply.

A tensor structure on F = Hom(U(g), -)= $Hom(M_{+} \otimes M_{-} \longrightarrow -)$:

Let V, WEM, V, WEF(V), F(W) define

Jvw: Hom (M+&M_, V)& Hom(M+&M_, W)

Hom (M+&M_, V&W)

by $\mathcal{J}_{VW}(v_{\partial W}): \mathcal{M}_{+} \otimes \mathcal{M}_{-} \xrightarrow{i_{+} \otimes i_{+}} (\mathcal{M}_{+} \otimes \mathcal{M}_{+}) \otimes (\mathcal{M}_{-} \otimes \mathcal{M}_{-})$ $\frac{\mathcal{D}_{S}'}{\langle \mathcal{K}' S \rangle} (\mathcal{M}_{+} \otimes \mathcal{M}_{-}) \otimes (\mathcal{M}_{+} \otimes \mathcal{M}_{-}) \xrightarrow{V \otimes W} V \otimes W$